Immunology & Public Health

- Study of immunology closely linked to practice of medicine
 - Transplants, treatments, & vaccines
- Increasing importance to public health
 - Infectious diseases, malnutrition, & tropical medicine
 - Worldwide a large immuno-compromised population
 - Spread of disease!

HIV/AIDS patients in Africa are receiving anti-retroviral drugs through a charitable campaign called RED, with some famous supporters. The destruction of the immune system by HIV has significantly increased morbidity and mortality worldwide, and is a leading global health concern. This semester we will learn more about public health efforts to stop the spread of the disease, as well as how HIV directly targets T cells.

Objectives

- Immunology Principles
 - Describe the innate immune system
 - Describe the adaptive immune system
 - Identify characteristics & types of each system
 - Identify accessories to these systems
Immunology

Definition:
The study of the organs, cells, and molecules of the immune system & accessory systems
- Recognition and disposal of foreign (non-self) materials (also known as antigens – Ag)
- How the systems respond and interact
- Desirable and/or undesirable consequences of their activity
- The ways these activities can be advantageously increased or decreased.

Immune System

Purpose: Prevent Infection
- Responsiveness to a diverse range of environmental information
- Responses are usually adaptive & specific to the stimulus
- Complex internal regulatory networks
- Capacity to respond to unexpected stimuli
- Self-referential & self-protective
Innate and Acquired Immunity

• Innate immunity
 • Natural immunity
 • No specificity
 • Defense through skin, macrophages, etc
• Acquired immunity
 • Adaptive immunity
 • Highly specific, leads to memory
 • Defense through lymphocytes – T and B cells

Mission Near Impossible

• For an organism to cause an infection, it must first colonize the host
• Pathogens must complete the following tasks:
 • Penetrate barriers (skin)
 • Resist physical removal (cilia)
 • Compete against normal flora
 • Defuse chemical defenses
 • Avoid stimulating inflammation
 • AND, escape acquired immunity

Antigen (Ag)

• Antigens will be described in more detail in Block Four, but for now ...
• They are non-self particles that have gained access to the body (such as a microbe or pollen)
• They are recognized by the immune system as foreign (by both innate & adaptive systems) & targeted for removal.
Antibody (Ab)
• Antibodies will be described in more detail in Block Three, but for now ...
• They are proteins that are produced by B cells to a specific pathogen or antigen
• Antibodies can attach to the pathogen & neutralize it, or target it for removal by other immune cells
• Integral component of the acquired defense

Resistance
• Innate (non-adaptive) or Constitutive “immunity”
• Not specific for any given pathogen or Ag
• Does not improve with successive exposures to the same pathogen or antigen – no memory
• Accessories to the adaptive immune system; complement, phagocytes, enzymes work to enhance adaptive response

Adaptive Immune System
• Purpose: must recognize self vs. non-self
 • Mostly recognizes pathogens
 • Many times innocuous particles (pet dander)
 • Sometimes self (autoimmunity)
• Components:
 • Antigen (substance capable of eliciting immune response)
 • Cellular limb – T and B cells (cell mediated)
 • Humoral limb – antibodies (ab mediated)
Adaptive Immunity

- Also called Acquired immunity
- Specific response to a given pathogen or antigen (antigens are non-self to the body)
- Improves with successive exposures to the same pathogen or Ag – memory
- Works together with accessories to protect against pathogens or to exert other effects such as immunopathology

Acquired Immunity

- Can be antibody or cell-mediated – usually both!
- Which type of immune response is effective is determined primarily by the site of the infection and type of pathogen involved
 - Extracellular, intracellular, persistent, etc.
- Immune responses are intimately connected to all other systems in the body

Types of Acquired Immunity

- Acquired Naturally
 - Active: exposure to pathogen with resulting disease & immune response made
 - Passive: transplacental Ab to fetus, no immune response made

- Acquired Artificially
 - Active: exposure to Ag (tetanus toxoid vaccine) with immune response made
 - Passive: injection of Ab (tetanus antitoxin), no immune response made
Examples of Innate Resistance & Acquired Immunity

<table>
<thead>
<tr>
<th></th>
<th>Innate Resistance</th>
<th>Acquired Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicochemical Barriers</td>
<td>Skin & mucous membranes</td>
<td>Mucosal Immune systems, SIgA</td>
</tr>
<tr>
<td>Circulating Molecules</td>
<td>Complement</td>
<td>Antibody</td>
</tr>
<tr>
<td>Cells</td>
<td>Phagocytes, granulocytes & NK Cells</td>
<td>T & B lymphocytes</td>
</tr>
<tr>
<td>Soluble Mediators</td>
<td>Non-lyte derived cytokines</td>
<td>Lyte derived cytokines</td>
</tr>
</tbody>
</table>

Accessories to the Immune System

- **Complement**: a set of ~20 proteins, present in the body fluids in inactive form, that can be sequentially activated in a controlled sequence (zymogens)

Complement membrane attack complexes (above) punch holes in the membranes of microbial invaders.
Functions of Complement
• Plays an essential role in inflammation
• Assists Abs in effector functions (Antibody Dependent Cell-mediated Cytotoxicity – ADCC)
• Assist in clearing immune complexes
• Deficiencies can result in severe inflammation
• Opsonization and facilitation of phagocytosis
• No Ag specificity

Accessories to the Immune System
• Inflammation: the body’s nonspecific reaction to invasion by pathogen, antigenic challenge or physical damage
• Acute Inflammation: short-lived response to transient injury
 • Cardinal signs: redness, heat, swelling, pain & immobility
 • Response is exudative in nature – neutrophils
 • Major goal: allow products of the immune response to enter area of infection or damage

Accessories to the Immune System
• Chronic Inflammation: sustained reaction to persistent injurious stimulus or Ag
 • May follow acute inflammatory response
 • Response is proliferative in nature – mononuclear cells, granuloma formation
 • Major goal: containment of injurious stimulus or Ag
• Acute and Chronic are different!
Immunopathology

- The immune system can be the cause of disease or other undesirable consequences – two-edged sword
 - Autoimmunity: inappropriate reaction to self as foreign
 - Immunodeficiency: ineffective immune responses, congenital & acquired
 - Hypersensitivity: overactive immune response to harmless Ags
 - Inconvenient responses: graft rejection, blood transfusions, reactions to drugs

In Summary

- Important components of the immune response:
 - Innate vs. acquired
 - Complement
 - Inflammation
 - Antibody
 - Antigen
 - Immunopathology
- These topics will be covered in more detail in upcoming units...

Keep in mind ...

- Our immune systems are always on watch for intruders & ready to respond immediately!
Self-Test Questions: Principles

• Which type of immunity improves after specifically recognizing antigen?
• What is an antibody? An antigen?
• Give 2 types of acquired immunity & examples of each.
• What is complement? Inflammation?
• Name & describe 2 types of inflammation.