Foundations of Public Health

Immunology Principles

Source: http://www.rice.edu/~jenky/sports/fatigue.html
Immunology & Public Health

- Study of immunology closely linked to practice of medicine
 - Transplants, treatments, & vaccines
- Increasing importance to public health
 - Infectious diseases, malnutrition, & tropical medicine
 - Worldwide a large immuno-compromised population
 - Spread of disease!

HIV/AIDS patients in Africa are receiving anti-retroviral drugs through a charitable campaign called RED, with some famous supporters. The destruction of the immune system by HIV has significantly increased morbidity and mortality worldwide, and is a leading global health concern. This semester we will learn more about public health efforts to stop the spread of the disease, as well as how HIV directly targets T cells.
Objectives

• Immunology Principles
 • Describe the innate immune system
 • Describe the adaptive immune system
 • Identify characteristics & types of each system
 • Identify accessories to these systems
Immunology

Definition:
The study of the organs, cells, and molecules of the immune system & accessory systems

• Recognition and disposal of foreign (non-self) materials (also know as antigens – Ag)
• How the systems respond and interact
• Desirable and/or undesirable consequences of their activity
• The ways these activities can be advantageously increase or decreased.
Immune System

Purpose: Prevent Infection

• Responsiveness to a diverse range of environmental information
• Responses are usually adaptive & specific to the stimulus
• Complex internal regulatory networks
• Capacity to respond to unexpected stimuli
• Self-referential & self-protective
HOW YOUR IMMUNE SYSTEM WORKS

The immune system protects the body from foreign invaders, such as viruses and bacteria. It has two main lines of defense:

1. **The Attackers**
 - Viruses
 - Bacteria
 - Allergens
 - Mites
 - Fungi
 - Infections
 - Physical or chemical injuries

2. **The Defenders**
 - Phagocytes: Cells that engulf and destroy invaders.
 - Antibodies: Proteins that recognize and neutralize foreign substances.
 - Complement system: A network of proteins that work together to destroy pathogens.
 - Natural killer cells: Cells that can kill virus-infected cells and cancer cells.

3. **The ‘Kill’**
 - The immune system can recognize and destroy invaders before they cause harm.

WHY YOUR NOSE RUNS
When an organism invades, the body has an inflammatory response. It starts producing mucus, which can be helpful in blocking or swallowing an attacker.

YOUR BODY’S BEST DEFENDERS
- **Tonsils**: Collections of lymph tissue in the back of the throat that filter out organisms that cause infection.
- **Liver**: White blood cells in this ‘filter’ organ remove organisms from the blood as it passes through.
- **Spleen**: Removes abnormal cells from circulation.
- **bone marrow**: All immune system cells start out here. White blood cells (neutrophils, lymphocytes) are formed, then released into circulation.
- **Skin**: Keeps organisms and allergens from entering the body.

HOW FEVER BEGINS
White blood cells release endogenous pyrogens that work on the hypothalamus to raise your temperature. Most viruses and bacteria can't thrive in hot environments.

ANTIBODIES
Antibodies in the blood recognize the invaders as foreign. A chain reaction then occurs that causes white blood cells stored in the blood vessels, spleen, and bone marrow to rush to the point of entry.

THE ‘KILL’
At the entry point, white blood cells literally swallow the invaders, releasing powerful substances to destroy them.
Innate and Acquired Immunity

- **Innate immunity**
 - Natural immunity
 - No specificity
 - Defense through skin, macrophages, etc

- **Acquired immunity**
 - Adaptive immunity
 - Highly specific, leads to memory
 - Defense through lymphocytes – T and B cells
Mission Near Impossible

- For an organism to cause an infection, it must first colonize the host
- Pathogens must complete the following tasks:
 - Penetrate barriers (skin)
 - Resist physical removal (cilia)
 - Compete against normal flora
 - Defuse chemical defenses
 - Avoid stimulating inflammation
 - AND, escape acquired immunity
Antigen (Ag)

- Antigens will be described in more detail in Block Four, but for now ...
- They are non-self particles that have gained access to the body (such as a microbe or pollen)
- They are recognized by the immune system as foreign (by both innate & adaptive systems) & targeted for removal.
Antibody (Ab)

- Antibodies will be described in more detail in Block Three, but for now ...
- They are proteins that are produced by B cells to a **specific** pathogen or antigen
- Antibodies can attach to the pathogen & neutralize it, or target it for removal by other immune cells
- Integral component of the acquired defense
Resistence

- Innate (non-adaptive) or Constitutive “immunity”
- *Not specific* for any given pathogen or Ag
- Does not improve with successive exposures to the same pathogen or antigen – *no memory*
- Accessories to the adaptive immune system; complement, phagocytes, enzymes work to enhance adaptive response
Adaptive Immune System

• Purpose: must recognize self vs. non-self
 • Mostly recognizes pathogens
 • Many times innocuous particles (pet dander)
 • Sometimes self (autoimmunity)

• Components:
 • Antigen (substance capable of eliciting immune response)
 • Cellular limb – T and B cells (cell mediated)
 • Humoral limb – antibodies (ab mediated)
Adaptive Immunity

- Also called Acquired immunity
- *Specific* response to a given pathogen or antigen (antigens are non-self to the body)
- Improves with successive exposures to the same pathogen or Ag – *memory*
- Works together with accessories to protect against pathogens or to exert other effects such as immunopathology
Acquired Immunity

• Can be antibody or cell-mediated – usually both!
• Which type of immune response is effective is determined primarily by the site of the infection and type of pathogen involved
 ➢ Extracellular, intracellular, persistent, etc.
• Immune responses are intimately connected to all other systems in the body
Types of Acquired Immunity

• Acquired Naturally
 Active: exposure to pathogen with resulting disease & immune response made
 Passive: transplacental Ab to fetus, no immune response made

• Acquired Artificially
 Active: exposure to Ag (tetanus toxoid vaccine) with immune response made
 Passive: injection of Ab (tetanus antitoxin), no immune response made
Examples of Innate Resistance & Acquired Immunity

<table>
<thead>
<tr>
<th></th>
<th>Innate Resistance</th>
<th>Acquired Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicochemical Barriers</td>
<td>Skin & mucous membranes</td>
<td>Mucosal Immune systems, SIgA</td>
</tr>
<tr>
<td>Circulating Molecules</td>
<td>Complement</td>
<td>Antibody</td>
</tr>
<tr>
<td>Cells</td>
<td>Phagocytes, granulocytes & NK Cells</td>
<td>T & B Lymphocytes</td>
</tr>
<tr>
<td>Soluble Mediators</td>
<td>Non-L’cyte derived cytokines</td>
<td>L’cyte derived cytokines</td>
</tr>
</tbody>
</table>
TABLE 3-7 Receptors of innate and adaptive immunity

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Innate immunity</th>
<th>Adaptive immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>Specific for conserved molecular patterns or types</td>
<td>Specific for details of antigen structure</td>
</tr>
</tbody>
</table>

RECEPTORS OF THE ADAPTIVE IMMUNE SYSTEM

<table>
<thead>
<tr>
<th>Receptor (location)</th>
<th>Target (source)</th>
<th>Effect of recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody (B-cell membrane,</td>
<td>Specific components of</td>
<td>Labeling of pathogen for destruction and removal</td>
</tr>
<tr>
<td>blood, tissue fluids)</td>
<td>pathogen</td>
<td></td>
</tr>
<tr>
<td>T-cell receptor (T-cell</td>
<td>Proteins or certain lipids of pathogen</td>
<td>Induction of pathogen-specific humoral and cell-mediated immunity</td>
</tr>
<tr>
<td>membrane)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessories to the Immune System

• **Complement**: a set of ~20 proteins, present in the body fluids in inactive form, that can be sequentially activated in a controlled sequence (zymogens)

Complement membrane attack complexes (above) punch holes in the membranes of microbial invaders.
Functions of Complement

• Plays an essential role in inflammation
• Assists Abs in effector functions (Antibody Dependent Cell-mediated Cytotoxicity – ADCC)
• Assist in clearing immune complexes
• Deficiencies can result in severe inflammation
• Opsonization and facilitation of phagocytosis
• No Ag specificity
Accessories to the Immune System

- Inflammation: the body’s nonspecific reaction to invasion by pathogen, antigenic challenge or physical damage
- Acute Inflammation: short-lived response to transient injury
 - Cardinal signs: redness, heat, swelling, pain & immobility
 - Response is exudative in nature – neutrophils
 - Major goal: allow products of the immune response to enter area of infection or damage
Accessories to the Immune System

- **Chronic Inflammation**: sustained reaction to persistent injurious stimulus or Ag
 - May follow acute inflammatory response
 - Response is proliferative in nature – mononuclear cells, granuloma formation
 - Major goal: containment of injurious stimulus or Ag

- Acute and Chronic are different!
Immunopathology

• The immune system can be the cause of disease or other undesirable consequences – two-edged sword
 • Autoimmunity: inappropriate reaction to self as foreign
 • Immunodeficiency: ineffective immune responses, congenital & acquired
 • Hypersensitivity: overactive immune response to harmless Ags
 • Inconvenient responses: graft rejection, blood transfusions, reactions to drugs
In Summary

- Important components of the immune response:
 - Innate vs. acquired
 - Complement
 - Inflammation
 - Antibody
 - Antigen
 - Immunopathology
- These topics will be covered in more detail in upcoming units...
Keep in mind ...

• Our immune systems are always on watch for intruders & ready to respond immediately!
Self-Test Questions: Principles

• Which type of immunity improves after specifically recognizing antigen?
• What is an antibody? An antigen?
• Give 2 types of acquired immunity & examples of each.
• What is complement? Inflammation?
• Name & describe 2 types of inflammation.