

Objectives

- Describe the process of T cells homing to sites of injury or infection
- Identify effector functions of CD8+ T cells
- Describe how CD4+ helper cells regulate the immune system
- Identify effector functions of Th1 CD4+ cells
- Identify effector functions of Th2 CD4+ cells
- Identify examples of regulation of the immune response
- Identify examples of cell-mediated immunopathology

Focus on CD8+ cells

- CD8 cells primarily respond to intracellular pathogens (restricted to MHC I)
- Once activated, CD8 cells proliferate into antigen specific **effector** cells
- Effector cells leave the peripheral lymphoid organs to migrate to the site of infection
- Major effector function: recognize & kill infected host cells
- CD8+ cells provide the major cellular response to viral infections

CD8+ T cells in red.

CD8+ T cells: Differentiation First signal: recognize antigen peptide on surface of host cell displayed by MHC I Second signal: need costimulators (B7 – CD28) to trigger activation Differentiation into effector cells leads to specific targeting of any other cell infected with same microbe (ag specificity)

CD4: Type 1 Helper cells (Th1)

- Cytokines influence immune response
- Th1 cells release interferon y, a potent activator of macrophages
- This also stimulates expression of MHC II on APCs, which amplifies the T cell response
- May result in tissue injury
- Improves cell-mediated response

CD4: Type 2 Helper Cells (Th2)

- Th2 cells release interleukin 4 (IL-4), which stimulates B cell responses
- Th2 cells also activate eosinophils to defend against parasites via IgE antibodies
- Can also dampen the Th1 response to limit tissue damage (anti-inflammatory)
- Improves humoral immunity

Regulation of the Immune Response

- Regulation by antigen
- Regulation by Antigen Presenting Cell (APC)
- Regulation by antibody
- Regulation by lymphocytes
- Regulation by neuroendocrine modulation
- Genetic control of immune response

Regulation by Antigen

- T & B cells; Antigen receptors, Class 1 & 2 MHC proteins
- Nature of the Antigen: chemical, intracellular or extracellular
- Antigen dose
- Route of administration of antigen (mucosa, skin, blood)

- Antigen recognition with MHC proteins or tolerance induction
- APC can up-regulate the expression of MHC on surface by cytokine induction

Regulation by Antibody

- Antibody blocking; competition for antigen
- Receptor cross-linking; Fc & Ag receptor inhibits Ab synthesis
- Immune complex; inhibition or augmentation

Regulation by T Lymphocyte

- Th1 & Th2 choose nature of immune responses (CMI or Ab)
- CD4+ T cells can prevent induction of autoimmunity
- Cross-regulation of Th1 & Th2 responses by cytokines
- CD8+ T cells can be suppressive

Regulation by Neuroendocrine Modulation

- Direct sympathetic innervation of lymphoid tissues
- Lymphocytes have receptors for hormones such as corticosteroids
- Stress can modulate immune system, especially leading to immunosuppression during stress

Genetic Control of Immune Responses

- Inherited ability to make Inherited ability to make immune responses to given Ag
- Influence of MHC haplotypes
- Influence of non-MHC linked genes
- T cells recognize Ag only in MHC context
- Thymus selection for selfrecognition
- MHC linked (inflammatory bowel disease, psoriasis, diabetes, etc) and autoimmune disease [Block 5]
- Non-MHC linked genes and susceptibility to infection

Cell-Mediated Immunopathology

- Cell-Mediated Immune Response causes tissue damage
- Cytotoxicity: essential cells are killed with a resultant deficit, autoimmunity
- Chronic inflammation: autoantigens, crossreactive Ags, lysosomal enzyme release
- Space-Occupying lesion: granulomas, impaired functions of organs
- Excessive cytokine release: Toxic Shock Syndrome, Schwartzman Reaction, Hemorrhagic Necrosis (TNF)
- Type 4 Delayed Hypersensitivity

Cell Mediated Immunity Summary

- "Transferred" by T lymphocytes, and is cellbased (NOT antibody)
- T cells provide Ag specificity (TcR)
- Cells exert effector functions (macrophages & T cells)
- Major Histocompatibility Restriction controls type of T cell involved
- Th1 & Th2 cells "choose" & regulate response

In Summary

- CD8+ effector mechanisms
- CD4+ effector mechanisms (Th1 & Th2)
- How T cells help B cells
- Macrophage activation
- Cytokines that control the immune response
- Regulation of the immune response
- CMI immunopathology

Self-Test Questions

- How do T cells find the site of injury? Include specific adhesion molecules that attract them to the area & those that keep them at the site (hint: see text).
- Describe how CD8+ T cells kill infected cells. What does granzyme do?
- Describe the effector functions of CD4+ Th1 cells. Th2 cells.
- What cytokines are involved in the regulation of the immune system? What cytokines stimulate CMI? Humoral immunity?
- Name 3 examples of CMI immunopathology.