Chapter 12

The Respiratory System
Oxygen Delivery: A Cooperative Effort

- Respiratory system oxygenates blood and removes carbon dioxide
- Circulatory system transports gases in the bloodstream
Lung: Structure and Function

• System of tubes conduct air into and out of the lungs
 – Bronchi: largest conducting tube
 – Bronchioles: less than 1 mm
 – Terminal bronchioles: smallest
 – Respiratory bronchioles: distal to terminal bronchiole with alveoli projecting from walls; form alveolar ducts and sacs; transport air and participate in gas exchange

• Alveoli: O_2 and CO_2 exchange; surrounded by alveolar septum; with cells that produce surfactant

• Lung divided into lobes consisting of smaller units or lobules
Structure Terminal Air Passages
Gas Exchange (1 of 2)

• Two functions of respiration
• Ventilation: movement of air into and out of lungs
 – Inspiration
 – Expiration
• Gas exchange between alveolar air and pulmonary capillaries
 – Atmospheric pressure, sea level = 760 mmHg
 – Partial pressure: part of total atmospheric pressure exerted by a gas
 – Partial pressure of oxygen, \(P_{O_2} \)
 – \(= 0.20 \times 760 \text{ mmHg} = 152 \text{ mmHg} \)
Gas Exchange (2 of 2)

- Gases diffuse between blood, tissues, and pulmonary alveoli due to differences in their partial pressures
 - Alveolar air \rightarrow Blood (Pulm capillaries)
 - \uparrow P0$_2$ 105 mmHg
 - \downarrow PC0$_2$ 35 mmHg
 - P0$_2$ 20 mmHg
 - PC0$_2$ 60 mmHg

- Requirements for efficient gas exchange
 - Large capillary surface area in contact with alveolar membrane
 - Unimpeded diffusion across alveolar membrane
 - Normal pulmonary blood flow
 - Normal pulmonary alveoli
Pulmonary Function Tests

• Evaluate efficiency of pulmonary ventilation and pulmonary gas exchange
• Tested by measuring volume of air that can be moved into and out of lungs under normal conditions
• Vital capacity: maximum volume of air expelled after maximum inspiration
• One-second forced expiratory volume (FEV₁): maximum volume of air expelled in 1 second
• Arterial PO₂ and PCO₂
• Pulse oximeter
The Pleural Cavity

- Pleura: thin membrane covering lungs (visceral pleura) and internal surface of the chest wall (parietal pleura)
- Pleural cavity: potential space between lungs and chest wall
- Intrapleural pressure: pressure within pleural cavity
 - Normally lesser than intrapulmonary pressure
 - Referred as “negative pressure” or subatmospheric because it is lesser than atmospheric pressure
 - Tendency of stretched lung to pull away from chest creates a vacuum
 - Release of vacuum in pleural cavity leads to lung collapse
Pneumothorax (1 of 2)

- Escape of air into pleural space due to lung injury or disease
- Stab wound or penetrating injury to chest wall: atmospheric air enters into pleural space
- Spontaneous pneumothorax – no apparent cause; rupture of small, air-filled subpleural bleb at lung apex

- Manifestations
 - Chest pain
 - Shortness of breath
 - Reduced breath sounds on affected side
 - Chest x-ray: lung collapse + air in pleural cavity
Pneumothorax (2 of 2)

- **Tension pneumothorax**
 - Positive pressure develops in pleural cavity
 - Air flows through perforation into pleural cavity on inspiration but cannot escape on expiration
 - Pressure builds up in pleural cavity displacing heart and mediastinal structures away from affected side

- **Chest tube inserted into pleural cavity; left in place until tear in lung heals**
 - Prevents accumulation of air in pleural cavity
 - Aids re-expansion of lung
Atelectasis (1 of 2)

• Collapse of lung
• Obstructive atelectasis caused by bronchial obstruction from
 – Mucous secretions, tumor, foreign object
 – Part of lung supplied by obstructed bronchus collapses as air absorbed
 – Reduced volume of affected pleural cavity
 – Mediastinal structures shift toward side of atelectasis
 – Diaphragm elevates on affected side
 – May develop as a postoperative complication
Atelectasis (2 of 2)

• Compression atelectasis
 – From external compression of lung by
 • Fluid
 • Air
 • Blood in pleural cavity
 – Reduced lung volume and expansion
Before atelectasis

Atelectasis of entire left lung

Affected lung appears dense with absorption of air; left half of diaphragm elevated; trachea and mediastinal structures shifted to side of collapse
Pneumonia (1 of 3)

• Inflammation of the lung
 – Exudate spreads through lung
 – Exudate fills alveoli
 – Affected lung portion becomes relatively solid (consolidation)
 – Exudate may reach pleural surface causing irritation and inflammation

• Classification
 – By etiology
 – By anatomic distribution of inflammatory process
 – By predisposing factors
Pneumonia (2 of 3)

• Etiology: most important, serves as a guide for treatment
 – Bacteria, viruses, fungi, *Chlamydia*, *Mycoplasma*, *Rickettsia*

• Anatomic distribution of inflammatory process
 – Lobar: infection of entire lung by pathogenic bacteria
 – Legionnaire’s Disease: gram-negative rod
 – Bronchopneumonia: infection of parts of lobes or lobules adjacent to bronchi by pathogenic bacteria
 – Interstitial or primary atypical pneumonia: caused by virus or *Mycoplasma*; involves alveolar septa than alveoli; septa with lymphocytes and plasma cells
Pneumonia (3 of 3)

• Predisposing factors
 – Any condition associated with poor lung ventilation and retention of bronchial secretions
 – Postop pneumonia: accumulation of mucous secretions in bronchi
 – Aspiration pneumonia: foreign body, food, vomit
 – Obstructive pneumonia: distal to bronchial narrowing

• Clinical features of pneumonia
 – Fever, cough, purulent sputum, pain on respiration, shortness of breath
Pneumocystis Pneumonia

- **Cause:** *Pneumocystis carinii*, protozoan parasite of low pathogenicity
- **Affects mainly immunocompromised persons**
 - AIDS, receiving immunosuppressive drugs, premature infants
- **Cysts contain sporozoites released from cysts that mature to form trophozoites; sporozoites appear as dark dots at the center of cyst on stained smears**
- **Organisms attack and injure alveolar lining leading to exudation of protein material into alveoli**
- **Cough, dyspnea, pulmonary consolidation**
- **Diagnosis:** lung biopsy by bronchoscopy or from bronchial secretions
Tuberculosis

- Infection from acid-fast bacteria, *Mycobacterium tuberculosis*
- Organism has a capsule composed of waxes and fatty substances; resistant to destruction
- Transmission: airborne droplets
- Granuloma: giant cell with central necrosis, indicates development of cell-mediated immunity
- Multi-nucleated giant cells: bacteria + fused monocytes + periphery of lymphocytes and plasma cells
 - Organisms lodge within pulmonary alveoli
 - Granulomas are formed
 - Spreads into kidneys, bones, uterus, fallopian tubes, others
Granuloma, tuberculosis
Central necrosis

Multinucleated giant cell, tuberculosis
Tuberculosis

• Infection from acid-fast bacteria, *Mycobacterium tuberculosis*
• Organism has a capsule composed of waxes and fatty substances; resistant to destruction
• Transmission: airborne droplets
• Granuloma: giant cell with central necrosis, indicates development of cell-mediated immunity
• Multi-nucleated giant cells: bacteria + fused monocytes + periphery of lymphocytes and plasma cells
 – Organisms lodge within pulmonary alveoli
 – Granulomas are formed
 – Spreads into kidneys, bones, uterus, fallopian tubes, others
Tuberculosis-Outcome

• Infection arrested and granulomas heal with scarring
• Infection may be asymptomatic, detected only by chest x-ray and/or Mantoux test
• Infection reactivated: healed granulomas contain viable organisms reactivated with reduced immunity leading to progressive pulmonary TB
• Spread through blood to other organs (extrapulmonary)
 – Secondary focus of infection may progress even if pulmonary infection has healed
• Diagnosis
 – Skin test (Mantoux)
 – Chest x-ray
 – Sputum culture
Reactivated and Miliary Tuberculosis

- Reactivated tuberculosis: active TB in adults from reactivation of an old infection; healed focus of TB flares up with lowered immune resistance

- Miliary tuberculosis
 - Multiple foci (small, white nodules, 1-2 mm in diameter) of disseminated tuberculosis, resembling millet seeds
 - Large numbers of organisms disseminated in body when a mass of tuberculous inflammatory tissue erodes into a large blood vessel
 - Extensive consolidation of one or more lobes of lung
 - At-risk: AIDS and immunocompromised individuals
Drug-Resistant Tuberculosis

- Resistant strains of organisms emerge with failure to complete treatment or premature cessation of treatment
- Multiple drug-resistant tuberculosis, MTB
 - TB caused by organisms resistant to at least two of the anti-TB drugs
 - Course of treatment is prolonged
 - Results less satisfactory
- Extremely drug-resistant tuberculosis, XDR-TB
 - Caused by organisms no longer controlled by many anti-TB drugs
 - Eastern Europe, South Africa, Asia, some cases in the United States
Bronchitis and Bronchiectasis

- Inflammation of the tracheobronchial mucosa
- Acute bronchitis
- Chronic bronchitis: from chronic irritation of respiratory mucosa by smoking or atmospheric pollution
- Bronchiectasis: walls weakened by inflammation become saclike and fusiform
 - Distended bronchi retain secretions
 - Chronic cough; purulent sputum; repeated bouts of pulmonary infection

- Diagnosis: bronchogram
- Only effective treatment: surgical resection of affected segments of lung
Chronic Obstructive Pulmonary Disease (1 of 4)

- Combination of emphysema and chronic bronchitis
- Pulmonary emphysema
 - Destruction of fine alveolar structure of lungs with formation of large cystic spaces
 - Destruction begins in upper lobes eventually affecting all lobes of both lungs
 - Dyspnea, initially on exertion; later, even at rest
- Chronic bronchitis: chronic inflammation of terminal bronchioles; cough and purulent sputum
Chronic Obstructive Pulmonary Disease (2 of 4)

- Three main anatomic derangements in COPD
- Inflammation and narrowing of terminal bronchioles
 - Swelling of bronchial mucosa → reduced caliber of bronchi and bronchioles → increased bronchial secretions → increased resistance to air flow → air enters lungs more readily than it can be expelled → trapping of air at expiration
- Dilatation and coalescence of pulmonary air spaces
 - Diffusion of gases less efficient from large cystic spaces
- Loss of lung elasticity; lungs no longer recoil normally following inspiration
Chronic Obstructive Pulmonary Disease (3 of 4)

- Chronic irritation: smoking and inhalation of injurious agents

- Pathogenesis
 - 1. Inflammatory swelling of mucosa
 - Narrows bronchioles; increased resistance to expiration; causing air to be trapped in lung
 - 2. Leukocytes accumulate in bronchioles and alveoli, releasing proteolytic enzymes that attack elastic fibers of lung’s structural support
 - 3. Coughing and increased intrabronchial pressure convert alveoli into large, cystic air spaces, over-distended lung cannot expel air
 - 4. Retention of secretions predisposes to pulmonary infection
Chronic Obstructive Pulmonary Disease (4 of 4)

• Lungs damaged by emphysema cannot be restored to normal

• Management
 – Promote drainage of bronchial secretions
 – Decrease frequency of superimposed pulmonary infections
 – Surgery does not improve survival, initial benefit is short-term
Bronchial Asthma

- Spasmodic contraction of smooth muscles on walls of bronchi and bronchioles
- Dyspnea and wheezing on expiration
- Greater impact on expiration than on inspiration
- Attacks are precipitated by allergens: inhalation of dust, pollens, animal dander, other allergens

Treatment
- Drugs that dilate bronchial walls: epinephrine or theophylline
- Drugs that block release of mediators from mast cells
Neonatal Respiratory Distress Syndrome

• Progressive respiratory distress soon after birth
• Hyaline membrane disease after red-staining membranes lining alveoli
• Pathogenesis: inadequate surfactant in lungs
 – Alveoli do not expand normally during inspiration
 – Tends to collapse during expiration
• At-risk groups
 – Premature infants
 – Infants delivered by cesarean section
 – Infants born to diabetic mothers
• Treatment
 – Adrenal corticosteroids to mother before delivery
 – Oxygen + surfactant
Neonatal Respiratory Distress Syndrome
Leakage of protein rich in fibrinogen that tends to clot and form adherent eosinophilic hyaline membranes impeding gas exchange.
Adult Respiratory Distress Syndrome

• Shock – major manifestation
• Conditions: fall in blood pressure and reduced blood flow to lungs
 – Severe injury (traumatic shock)
 – Systemic infection (septic shock)
 – Aspiration of acid gastric contents
 – Inhalation of irritant or toxic gases
 – Damage caused by SARS

• Damaged alveolar capillaries leak fluid and protein
• Impaired surfactant production from damaged alveolar lining cells
• Formation of intra-alveolar hyaline membrane
Pulmonary Fibrosis

- Fibrous thickening of alveolar septa from irritant gases, organic, and inorganic particles
 - Makes lungs rigid restricting normal respiratory excursions
 - Diffusion of gases hampered due to increased alveolar thickness
 - Causes progressive respiratory disability similar to emphysema

- Collagen diseases

- Pneumoconiosis: lung injury from inhalation of injurious dust or other particulate material
 - Silicosis (rock dust) and asbestosis (asbestos fibers)
Lung Carcinoma

• Usually smoking-related neoplasm
• Common malignant tumor in both men and women
• Mortality from lung cancer in women exceeds breast cancer
• Arises from mucosa of bronchi and bronchioles
• Rich lymphatic and vascular network in lungs facilitates metastasis
• Often referred as bronchogenic carcinoma because cancer usually arises from bronchial mucosa
• Treatment: surgical resection or radiation and chemotherapy for small cell carcinoma and advanced tumors