Foundations of Global Health

Communicable Diseases (Part 1): Control & Smallpox Eradication

Nature, that lovely lady to whom we owe polio, leprosy, smallpox, syphilis, tuberculosis, cancer... ~Dr. Stanley Cohen

Importance of Communicable Diseases

• Over 13 million people die each year from infectious and parasitic diseases
• Immensely important to the global burden of disease
 – Most important burden of disease in Sub-Saharan Africa
• Poor people, women, children, and the elderly are the most vulnerable
• Enormous economic consequences
• Much of burden unnecessary
• Relevance to MDGs

Communicable Disease Definitions

Case—An individual with a particular disease.
Case Fatality Rate—The proportion of persons with a particular condition (cases) who die from that condition.
Control (Disease Control)—Reducing the incidence and prevalence of a disease to an acceptable level.
Eradication (of Disease)—Termination of all cases of a disease and its transmission and the complete elimination of the disease-causing agent.
Palliative Care—End of life care.
Parasite—An organism that lives in or on another organism and takes it nourishment from that organism.

Disease Triangle

• Need host, pathogen & environment to produce disease
• Multiple external factors can influence this cycle
 – Reservoir
 – Vectors
 – Abiotic conditions
 – Culture & behavior

Chain of Infection

• Model to visualize transmission of a communicable disease from its source (reservoir) to a susceptible host

Learning Objectives

• Identify components of the disease triangle and links in the chain of transmission
• Define prevention, control, elimination, eradication and extinction for infectious diseases
• Identify eradication indicators
• Outline successful interventions against communicable diseases (smallpox)
• Define the International Health Regulations
• Identify Nationally Notifiable Diseases
Pathogen

- Disease causing agent

Malaria Smallpox Polio HIV (top) & Tuberculosis

Reservoir

- Habitat where infectious agent normally lives
 - Human: symptomatic or asymptomatic
 - Animal: zoonotic
 - Non-living (environmental): plants, soil, and water contribute to life cycle

Portal of Exit

- Path by which an agent leaves the reservoir or source host

Transmission

- How pathogens are passed
 - Direct
 - Direct contact
 - Droplet spread
 - Indirect
 - Airborne
 - Vehicleborne
 - Vectorborne

Portal of Entry

- Agent enters susceptible host

- Portals:
 - Respiratory
 - Oral
 - Skin
 - Intravenous
 - Gastrointestinal

New Host

- Final link is a susceptible host
Basic Reproductive Ratio (R_0)

- R_0 definition: expected number of secondary infections arising from a single individual during his or her entire infectious period, in a population of susceptibles

Herd Immunity

- Sustained transmission
 - Transmitting case
 - Susceptible
 - Transmitting case
 - Susceptible

Transmission terminated

- Transmitting case (A)
 - Immune (B)
 - Susceptible (C) (Indirectly Protected)

Herd Immunity Thresholds for Selected Vaccine-Preventable Diseases

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria</td>
<td>6.7</td>
<td>85%*</td>
<td>83%*</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Measles</td>
<td>12.18</td>
<td>83-94%</td>
<td>92%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>Mumps</td>
<td>4.7</td>
<td>75-85%</td>
<td>92%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Pertussis</td>
<td>12-17</td>
<td>82-94%</td>
<td>83%*</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Polio</td>
<td>5.7</td>
<td>80-85%</td>
<td>90%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td>6.7</td>
<td>85-88%</td>
<td>92%</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Smallpox</td>
<td>5.7</td>
<td>80-85%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*4-dose

Help—It’s Contagious!

- How do we stop these diseases that can “reproduce”?

Disease Prevention

- whole population
 - well population
 - primary prevention/promotion of well being
 - at risk
 - secondary prevention/early intervention
 - established disease/rehab/continuing care
 - tertiary prevention/disease management

Disease Control

- Reduction of disease incidence, prevalence, morbidity or mortality to a locally acceptable level as a result of deliberate efforts
- Need continued intervention measures to maintain control
Elimination

- **Reduction to zero** of the incidence (new cases) of disease or infection in a defined geographical area
- **Need continued surveillance and measures** to prevent re-establishment of transmission

Eradication & Extinction

- **Eradication**: permanent reduction to zero of **worldwide** incidence of disease or infection
 - Intervention measures no longer needed
 - Smallpox
- **Extinction**: infectious agent **no longer exists** in nature or in laboratory
 - NONE

<table>
<thead>
<tr>
<th>Control</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducing infection, cases, deaths and illness due to a disease. "Acceptable" levels of disease may vary by region. Consistent, sustained prevention and treatment interventions are necessary to ensure ongoing reduction of illness.</td>
<td>Reducing the number of cases and new infections to zero. Efforts often focus on a defined geographical area in which the infectious agent is endemic. Continued intervention measures are required to ensure that the infectious agent does not re-emerge in a region that has experienced elimination.</td>
</tr>
<tr>
<td>Examples: diarrheal diseases, onchocerciasis (Africa), malaria, tuberculosis</td>
<td>Examples: tetanus, poliomyelitis, leprosy, lymphatic filariasis, measles, onchocerciasis in Americas</td>
</tr>
</tbody>
</table>

Eradication

- Permanent worldwide elimination of an infectious agent in nature - no new infections or cases of disease. The agent may exist in designated laboratories.
- After a period of years, intervention measures are no longer needed.
- Examples: Smallpox

Extinction

- The specific infectious agent no longer exists in nature or in the laboratory.
- Examples: None

Source: CDC

The 1st Smallpox Vaccination Jenner 1796

Cowpox lesions on the hand of Sarah Nelmes (case XVI in Jenner's Inquiry), from which material was taken for the vaccination of James Phipps below in 1796

Smallpox Endemic Areas 1945

Smallpox Endemic Areas 1967
R & D Contributions

Bifurcated Needle
98%+ take
Freeze-Dried Smallpox Vaccine

Smallpox Eradication Strategy

1. Mass vaccination campaigns in each country, using vaccine of ensured potency that would reach ≥80% of population.
2. Development of a system to detect and contain cases and outbreaks.

† Henderson DA, Mass B, Smallpox and Vaccinia in Vaccines, 3rd edition, 1999

Mass Vaccination

Surveillance and Containment Strategy

• Search for cases
• Containment of spread by vaccinating primary contacts and their contacts
• Most efficient strategy

Progression of Smallpox
Last Cases of Smallpox

Rahima Banu – 10 October 1975
Variola Major, Bangladesh

Ali Maow Maalin – 26 October 1977
Variola Minor, Somalia

Two laboratory acquired cases occurred in UK in 1978.

Why Worry About Smallpox?

- Allegations that Soviet BW program produced smallpox virus for use in bombs and ICBMs
- Concerns that smallpox virus could be obtained and used by others as terrorist weapon

1980

smallpox is dead!

The Faces of Smallpox

Eradication: Principle Indicators

- **Effective intervention** is available to interrupt transmission of the agent
- Practical **diagnostic tools** are available to detect levels of infection that can lead to transmission
- Humans are **essential** for life-cycle of agent
 - no other vertebrate reservoir
 - does not amplify in the environment
ITFDE

- Targeted six infectious diseases for eradication
 - mumps, polio, rubella, guinea worm disease, lymphatic filariasis, and cysticercosis
- And, now measles!
- Eradication is defined as "reduction of the worldwide incidence of a disease to zero"

<table>
<thead>
<tr>
<th>Disease targeted for eradication</th>
<th>Current annual toll worldwide</th>
<th>Chief obstacles to eradication</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallpox</td>
<td><1,000 persons per year</td>
<td>Spread, scrutiny</td>
<td>Eradicated</td>
</tr>
<tr>
<td>Mumps</td>
<td>700,000 deaths</td>
<td>Lack of timely effective vaccine for young infants, poor public recognition of disease</td>
<td>Potentially eradicable</td>
</tr>
<tr>
<td>Polio</td>
<td>2,000 cases of paralytic disease</td>
<td>Lack of focus on impact in developing countries; difficult diagnosis</td>
<td>Eradicated</td>
</tr>
<tr>
<td>Measles</td>
<td>1,000,000 deaths</td>
<td>Lack of data on impact of disease</td>
<td>Potentially eradicable</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>100,000 deaths</td>
<td>Lack of vaccine coverage</td>
<td>Not possible</td>
</tr>
<tr>
<td>Yellow fever</td>
<td><1,000 deaths</td>
<td>Not yet eradicated</td>
<td>Not possible</td>
</tr>
</tbody>
</table>

Obstacles to Elimination

- Non-human reservoirs
- Asymptomatic cases
- Drug resistance
- Weak health systems
- Vaccine safety concerns
 - Autism fears
 - Impotency
 - Contamination

Control At the International Level

The World Health Organization (WHO)

- Headquarters in Geneva, Switzerland; 193 member nations
- Uses sophisticated systems of surveillance and communication to keep track of microbial diseases on a global level
 - Influenza surveillance network; identifies strains to include in annual vaccines
- Assists countries in control of diseases
- Sets priorities and standards for disease treatment and allocation of resources

International Health Regulations

- Only binding international agreements on disease control
- Framework to prevent international spread of disease through effective national surveillance and coordination of response to public health emergencies
 - Maximum protection, minimum restriction
- IHR 1969 only applied to traditionally "quarantinable" diseases
 - Cholera, plague, and yellow fever
- Restricted surveillance to info provided by governments

WHO’s innovative approach to global disease surveillance

IHR 2005

- More effective against global disease threats
- Require countries to report certain disease outbreaks and public health events to WHO
- Enforced in 2007

Partnership for global alert and response to infectious diseases: network of networks

VSO Regional & Country Offices
VSO Collaborating Centres
Epidemiology and Surveillance Networks
Military Laboratory Networks
UN State Agencies
NGOs
Electronic Discussion sites
Media

©2010 Jones & Bartlett Publishers, LLC
National Notifiable Infectious Diseases (2007)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Virus Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS/HIV</td>
<td>HIV</td>
</tr>
<tr>
<td>Anthrax</td>
<td>Adenovirus</td>
</tr>
<tr>
<td>Arbovirus disease</td>
<td>Flavivirus</td>
</tr>
<tr>
<td>California encephalitis virus</td>
<td>Western equine encephalitis virus</td>
</tr>
<tr>
<td>Eastern equine encephalitis</td>
<td>Eastern equine encephalitis virus</td>
</tr>
<tr>
<td>*Newton virus</td>
<td>Newton virus</td>
</tr>
<tr>
<td>Rift Valley virus</td>
<td>Rift Valley virus</td>
</tr>
<tr>
<td>St Louis encephalitis virus</td>
<td>St Louis encephalitis virus</td>
</tr>
<tr>
<td>Western equine encephalitis virus</td>
<td>Western equine encephalitis virus</td>
</tr>
<tr>
<td>Botulism</td>
<td>Clostridium botulinum</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Brucella</td>
</tr>
<tr>
<td>Chancroid</td>
<td>Klebsiella</td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>Chlamydia trachomatis</td>
</tr>
<tr>
<td>Cholera</td>
<td>Vibrio cholera</td>
</tr>
<tr>
<td>Coccidioidomycosis</td>
<td>Coccidioides immitis</td>
</tr>
<tr>
<td>Cryptosporidiosis</td>
<td>Cryptosporidium</td>
</tr>
<tr>
<td>Cyclosporiasis</td>
<td>Cyclospora</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>Corynebacterium diphtheriae</td>
</tr>
<tr>
<td>Dissease</td>
<td>Mycoplasma pneumoniae</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Filarial disease</td>
<td>Wuchereria bancrofti</td>
</tr>
<tr>
<td>Giardiasis</td>
<td>Giardia lamblia</td>
</tr>
<tr>
<td>Gonorrhea</td>
<td>Neisseria gonorrhoeae</td>
</tr>
<tr>
<td>Hantavirus</td>
<td>Hantavirus</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Hepatitis A</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>Hepatitis C</td>
</tr>
<tr>
<td>Hemolytic uremic syndrome</td>
<td>Klebsiella</td>
</tr>
<tr>
<td>Influenza mortality</td>
<td>Influenza</td>
</tr>
<tr>
<td>Legionellosis</td>
<td>Legionella</td>
</tr>
<tr>
<td>Listeriosis</td>
<td>Listeria</td>
</tr>
<tr>
<td>Lyme disease</td>
<td>Borrelia burgdorferi</td>
</tr>
<tr>
<td>Malaria</td>
<td>Plasmodium falciparum</td>
</tr>
<tr>
<td>Measles</td>
<td>Morbillivirus</td>
</tr>
<tr>
<td>Meningococcal disease</td>
<td>Neisseria meningitides</td>
</tr>
<tr>
<td>Mumps</td>
<td>Rubella</td>
</tr>
<tr>
<td>Mumps</td>
<td>Rubella</td>
</tr>
<tr>
<td>Mumps</td>
<td>Rubella</td>
</tr>
<tr>
<td>Novel influenza A virus infxn</td>
<td>Novel influenza A virus infxn</td>
</tr>
<tr>
<td>Pertussis</td>
<td>Bordetella pertussis</td>
</tr>
<tr>
<td>Plague</td>
<td>Yersinia pestis</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>Polyomaviridae</td>
</tr>
<tr>
<td>Psittacosis</td>
<td>Psittacosis</td>
</tr>
<tr>
<td>Q fever</td>
<td>Q fever</td>
</tr>
<tr>
<td>Rabies</td>
<td>Rabies</td>
</tr>
<tr>
<td>Rockey Mountain spotted fever</td>
<td>Rabies</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>Salmonella</td>
</tr>
<tr>
<td>SARS</td>
<td>Coronavirus</td>
</tr>
<tr>
<td>Shiga toxin-producing E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Shigella</td>
<td>Shigella</td>
</tr>
<tr>
<td>Smallpox</td>
<td>Variola</td>
</tr>
<tr>
<td>Streptococcal infections</td>
<td>Streptococcus</td>
</tr>
<tr>
<td>Syphilis</td>
<td>Treponema pallidum</td>
</tr>
<tr>
<td>Typhoid fever</td>
<td>Salmonella</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Mycobacterium</td>
</tr>
<tr>
<td>Tularemia</td>
<td>Francisella tularensis</td>
</tr>
<tr>
<td>Typhus fever</td>
<td>Salmonella</td>
</tr>
<tr>
<td>Varicella</td>
<td>Herpesvirus</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Herpesvirus</td>
</tr>
</tbody>
</table>

Practice Questions

- Define case, case fatality rate.
- What are the components of the disease triangle?
- What are links in the chain of transmission?
- What is the basic reproductive rate?
- Define prevention, control, elimination, eradication, extinction.
- What strategies were used to eradicate smallpox? What indicators made it possible?
- Define the international health regulations. What diseases were reportable under IHR 1969? IHR 2005?
- Name 5 nationally notifiable diseases in the United States.

In Summary...

- Infectious diseases represent a major burden on public health
- Prevention, control and elimination are possible in significantly reducing this burden for many diseases
- Eradication of infectious diseases are more challenging
- Proven success story for eradication of smallpox... can it be repeated?
- International Health Regulations and reporting of notifiable diseases will aid these efforts