Incidence \& Prevalence Handout

This module will review common epidemiological measures and also explain how to calculate important measures.

Before we begin looking at epidemiological measures, I wanted to remind you of why this is important. The overall goal of epidemiology is to improve the health of populations. This quote by the World Health Organization made in 1948 remains true today. We want to look at health as a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity. In this regard, we care about physical health, mental health, and social health. Because the vision of health is so broad, epidemiology is likewise broad. Epidemiologists not only study cancer, infectious diseases, cardiac disease, but also domestic violence, unintentional injury, handgun safety, depression, etc. The field is as broad as you can imagine.
This somewhat complex graphic illustrates current understanding of the multi-level view of health using a systems approach. It also considers the effect of time. We know that health changes over the course of an individual's life. In addition, health is impacted by many factors. We are effected by our genetics, maternal behaviors during pregnancy, and even behaviors of our grandmothers during their pregnancies. The field of epigenetics has demonstrated that experiences of people can turn on and off certain genes and that these changes in genes are inherited much like our genome is. Traditionally epidemiologists have looked at individual behavior as a risk factor for disease. Smoking causes cancer, or a high fat diet leads to heart disease. But now we are appreciating that many other factors, our family and friends, work and

| | school sites, national laws and policies as well as our
 overall political, economic and physical environment.
 As we move forward in this class, we need to
 consider more than just the traditional behavioral
 factors in studying disease and improving health. |
| :--- | :--- | :--- |
| CASE DEFINITION | |

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { per } 100 \text { in this case, it would be 0.1 per 100 and that } \\ \text { would be hard for people to understand. Remember, } \\ \text { you want to present your data in a way that is easy } \\ \text { to understand. So 1 per 1,000 works really well. } \\ \text { PREVALENCE }\end{array} \\ \text { Prevalence is an important epidemiological term. It } \\ \text { is a proportion. Prevalence refers to the number of } \\ \text { cases of a disease divided by everyone at risk for } \\ \text { disease. Prevalence is also usually expressed per } \\ 1,000 \text { people. You can measure prevalence at a } \\ \text { certain time period since you do not have to wait for } \\ \text { people to develop the disease or you can measure } \\ \text { prevalence during a given time period. In the } \\ \text { example below prevalence was measured on } \\ \text { January 1st and on that day 7,000 of 70,000 people } \\ \text { living in City A had arthritis. This is 10\% of the } \\ \text { population or 100 cases per each thousand people. } \\ \text { In this case you may choose to say 10 cases per } \\ \text { every hundred people or 1 in 10, as these are easily } \\ \text { understandable. They all equal the same thing. }\end{array}\right\}$

EXAMPLE: Cohort study of the risk of breast cancer among women with hyperthyroidism

```
DATA:
    - 1,762-# of Women
    - 30,324 py-total years of follow up
    - 17 - Average years of follow up per woman
    - 61-# of breast cancer cases
```

 Incidence Rate (IR) Calculations
 \(\frac{61}{30,324 \text { py }}=0.00201 / y=\frac{201}{100,000 p y}\left(\frac{0.00201 \times 100,000 p}{100,000 p}\right)\)

TABLE 2-5 Distinguishing Characteristics of Incidence and Prevalence Type of
 Cumulative Proportion None 0 tol New cases Population Reser
Cumulative
incidence

Frevalence Proportion None 0 to 1 Exases
 AND INCIDENCE

This slide shows a data from a calculation of the incidence of breast cancer among women with hypothyroidism. They divided the number of women who had breast cancer by the total years of followup. As you can see women were followed on an average of 17 years but that is not included in the calculation. The rate was presented per 100,000 person years of follow-up which can be used when you are evaluating cancer, which is a relatively rare disease.

This slide shows a comparison between the three measures. As you can see cumulative incidence and prevalence are proportions using people in the denominator although cumulative incidence is more likely to follow people over time than prevalence which can be a one-time measure. In contrast incidence rate is a true rate and the denominator is time of follow-up.

There is a relationship between incidence and prevalence. Quite simple, prevalence equals incidence times duration. Duration refers to the length of a disease from onset to its termination by either cure or death. If incidence is low and duration is long the prevalence will be relatively high.
However, if incidence is high but duration is short, the prevalence is relatively low. This relationship only really holds up if the duration of the disease remains constant.

