Descriptive Epidemic	ology	
Part 1		
	Dr. H. Stockwell	

- Divided in to two major components: Descriptive Epidemiology Analytic Epidemiology (hypothesis testing)
- Both important to our understanding of disease
- Cannot ask relevant questions about disease etiology without a firm understanding of the descriptive epidemiology

Distribution of disease: Descriptive Epidemiology

- Person: age, sex, race/ethnicity, SES, occupation, lifestyle
- Place: neighborhood, state, country, environment
- Time: date of exposure, date of diagnosis etc

Death ra	ates (DR) per 1	100 000 nonula	
coronar	· / •	e U.S.,1981, by	
Age	White men	White women	DR men/womer
25-34	9.4	4.2	2.2
35-44	60.6	16.2	3.7
		71.2	3.7
45-54	265.6	/1.4	3.1
	265.6 708.7	243.7	2.9
55-64			
45-54 55-64 65-74 75-84	708.7	243.7	2.9

Race and Ethnicity in Epidemiologic Research

- Often used variables in research frequently used to assess the association of these variables on disease outcomes
- Biologically race is ill defined, poorly understood and may be of questionable validity
- Race has been described as an arbitrary system of visual classification (Fullilove, MT, 1998)
- DNA evidence indicates genetic diversity is a continuum with no clear breaks that delineate racial groups
- Since 2000 census individuals can self identify with more than one racial group From Gords L 3rd ed.

NO AUDIO ON THIS SLIDE. CLICK NEXT TO CONTINUE.

Race and Ethnicity in Epidemiologic Research

- Alternative approach is to use ethnicity
- Ethnicity is complex may involve shared origins, culture, language
- What is the relationship to disease does it increase our understanding of disease process, risk etc?
 From Gordis L 3rd ed.

4

	· •	·	0
Across countries: lati Between cities or cou	· •	·	0
Between cities or cou	nties, areas: urba	n-rural and wi	
		ii iuiu uiu	thin a city
G.B.	Japan	Nigeria	U.S.A.
Liver cancer LOW			
Lung cancer HIGH			
Stomach	HIGH		
Bladder	LOW	LOW	HIGH
Colon	LOW	LOW	HIGH
Prostate	LOW	LOW	HIGH
	LOW	LOW	HIGH
Ovarian			HIGH

Time

• Is there a temporal pattern? When is the disease occurring?

- Short term fluctuations- in disease frequency – food borne outbreak
- Cyclic patterns: annual increases in influenza in cold months
- Secular trends: long terms changes over decades or more- heart disease

Characteristics of Cyclical Time trends

- Periodic fluctuations on a seasonal basis/annual basis
 - valuable mostly in investigation of acute diseases or those with a short latent period (period between exposure and disease onset/diagnosis)
- Example: epidemiology of respiratory diseases/influenza – i.e., ease of transmission in winter months with increased crowding and human contact

4

Characteristics of Secular trends

Secular trends in chronic diseases may be caused by changes in:

- Diagnostic techniques
- Case finding
- · Accuracy in enumerating the population at risk
- Age distribution of the population
- Management of disease after diagnosis

Secular trends in chronic diseases may be caused by a change *in the actual incidence of disease due to alterations in environmental, genetic or lifestyle factors*

Epidemic

- "the occurrence in a community or region of cases of an illness, specific health related behavior or other health related events clearly in excess of normal expectancy"
- Consider person, place and time

Disease Clusters

 "aggregation of relatively uncommon events or diseases in space and/or time in amount that are believed or perceived to greater than could be expected by chance"

Study Designs

- Studies are classified as Descriptive or Analytic
- Descriptive studies describe the situation – they do not test a hypothesis
- Analytic Studies test a hypothesis

Types of Descriptive Studies

- Case reports/case series- describe the experience of a patient or group of patients-may lead to a new hypothesis
- Correlational studies- measure characteristics in entire populations not individuals. May also be analytic and test a hypothesis
- Cross sectional surveys -exposure and disease measured at the same time in a group of individuals. May also be analytic and test a hypothesis

Case Report
Careful and detailed report by one or more
clinicians of the clinical profile of a single patient
Strengths:
Document unusual medical history/clinical
features of disease
Can provide clues in the identification of a new
disease or adverse effects of exposures

4

4

Correlational/Ecologic Studies

- Uses data from the entire population to compare disease frequencies between different groups during the same time period or same population at different points in time
- Example: per capita consumption of meat and colon cancer rates
- May be descriptive or analytic depending on whether testing a hypothesis

 Examples: Cigarette sales and mortality from CHD Death rates from breast cancer and dietary fat

Ecological Fallacy (also known as Aggregation Bias)

- Patterns observed on the aggregate level are not observed at the individual level
- Cannot control for outside factors which may explain the association
- Erroneous conclusions based on grouped data:
 - The <u>ecologic fallacy</u> refers to a bias that occurs when an association seen at the aggregate level does not represent the association seen at an individual level
- The association seen at the aggregate level is not true (biased association)
- Many ecologic studies provide the basis for individual-level studies to be conducted ecologic studies are often a good "first look"

Cross-Sectional Studies

- Exposure and disease outcome measured simultaneously
- Includes prevalent cases of disease(everyone with the disease at that point in time)
- No information on the temporal relationship between exposure and disease
- Good for variables that do not change (eye color, blood type etc) or good correlation between current and past practice - diet
- Both disease and exposure may have been the result of a third factor

Repeated Measures Studies

- Successive cross-sectional studies
- Repeated surveys of same population not same individuals
- Detect overall time trends in a population

