Chapter 20
The Endocrine Glands

Learning Objectives (1 of 2)
• Explain normal physiologic functions of pituitary hormones, common endocrine disturbances, and treatment
• Describe major thyroid abnormalities, clinical manifestations, and treatment
• Explain normal physiologic functions of adrenal cortex and medulla, common disturbances, and treatment
• Define causes and effects of parathyroid dysfunction and treatment

Learning Objectives (2 of 2)
• Discuss concept of ectopic hormone production by nonendocrine tumors
• Explain adverse health effects of obesity, surgical procedures for obesity and their rationale
• Explain stress and its effects on the endocrine system

Endocrine Glands (1 of 2)
• Major endocrine glands
 – Pituitary
 – Thyroid
 – Parathyroid
 – Adrenal cortex and medulla
 – Pancreatic islets
 – Ovaries and testes

Endocrine Glands (2 of 2)
• Level of hormone in circulation: controls amount of hormone synthesized and released by an endocrine gland
• Disorders: hypersecretion or hyposecretion
• Determination of clinical effects
 – Degree of dysfunction
 – Age and sex of affected individual

Pituitary Gland (1 of 6)
• Suspended by stalk from hypothalamus at base of brain
 – Anterior lobe
 – Intermediate lobe: rudimentary structure
 – Posterior lobe
• Tropic hormones (regulate other endocrine glands)
 – Regulated by level of hormone produced by the target gland
 – Self-regulating mechanism maintains uniform hormone output
 – Prolactin secretion controlled by prolactin inhibitory factor
 – Thyroid stimulating hormone stimulates release of prolactin and thyroid hormones
Pituitary Gland (2 of 6)

• Anterior lobe hormones
 – Growth hormone: stimulates growth of tissues
 – Prolactin: stimulates milk production
 – Thyroid-stimulating hormone (TSH)
 – Adrenocorticotrophic hormone (ACTH)
 – Follicle-stimulating hormone (FSH)
 – Luteinizing hormone (LH)
• Posterior lobe hormones
 – Antidiuretic hormone (ADH): causes more concentrated urine
 – Oxytocin: stimulates uterine contractions and milk secretion

Normal mechanisms controlling elaboration of tropic hormones by the pituitary gland

Pituitary Gland (3 of 6)

• Panhypopituitarism
 – Anterior lobe fails to secrete all hormones
• Pituitary dwarfism
 – Deficiency of growth hormone
 – Causes retarded growth and development
• Diabetes insipidus
 – Failure of posterior lobe to secrete ADH or failure of kidney to respond to ADH (nephrogenic diabetes insipidus)
 – Unable to absorb H₂O
 – Causes excretion of large amounts of diluted urine
 – From a pituitary tumor

Pituitary Gland (4 of 6)

• Growth hormone overproduction
 – Caused by pituitary adenoma
 – Causes gigantism in children
 – Causes acromegaly in adults
 – May cause visual disturbances from tumor encroachment in optic chiasm
• Prolactin overproduction
 – Result of small pituitary adenoma
 – Also from conditions affecting function of hypothalamus
 – Causes amenorrhea and galactorrhea (milk secretion from non-pregnant breasts)

Pituitary Gland (5 of 6)

• Pituitary tumors
 – Many pituitary endocrine disturbances caused by anterior lobe pituitary tumors
 – Clinical manifestations depend on size of tumor and the hormone produced
 • Functional tumors: produce hormones that cause clinical manifestations
 • Nonfunctional tumors: do not produce hormones but exert other effects
 • May encroach on important structures adjacent to optic chiasm; disrupt hormone-producing functions of anterior lobe cells

Pituitary Gland (6 of 6)

• Pituitary tumors
 – Treatment determined by type, size, and hormone produced by tumor
 • Drugs to suppress tumor growth
 • Surgical resection: usual surgical approach is through the nasal cavity (transsphenoidal resection)
Acromegaly

© Courtesy of Leonard Crowley, M.D., University of Minnesota Medical School

Thyroid Gland

- **Structure**
 - Two lateral lobes connected by isthmus
 - Composed of thyroid follicles that produce and store hormones
 - Hormone production regulated by TSH (thyroid stimulating hormone)
 - Parafollicular cells: secrete calcitonin
- **Actions**
 - Controls rate of metabolic processes
 - Required for normal growth and development

Normal thyroid gland, illustrating two lateral lobes connected by narrow isthmus

Low-magnification photomicrograph of cellular structure of normal thyroid gland.

High-magnification photomicrograph of normal thyroid follicles.

Thyroid Gland

<table>
<thead>
<tr>
<th>Hyperthyroidism</th>
<th>Hypothyroidism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid pulse</td>
<td>Slow pulse</td>
</tr>
<tr>
<td>Increased metabolism</td>
<td>Decreased metabolism</td>
</tr>
<tr>
<td>Hyperactive reflexes</td>
<td>Sluggish reflexes</td>
</tr>
<tr>
<td>Emotional lability</td>
<td>Placid and phlegmatic</td>
</tr>
<tr>
<td>GI effect: diarrhea</td>
<td>GI effect: constipation</td>
</tr>
<tr>
<td>Warm, moist skin</td>
<td>Cold, dry skin</td>
</tr>
</tbody>
</table>

Nontoxic Goiter

- Thyroid gland enlarges to increase hormone secretion
- Causes
 - Inadequate hormone output
 - Iodine deficiency
 - Enzyme deficiency
 - Inefficient enzyme function
 - Increased hormone requirements
- Treatment: administer thyroid hormone; may need surgical removal

The pathogenesis of nontoxic goiter

Hyperthyroidism

- Toxic goiter or Graves disease
- Caused by antithyroid antibody that stimulates gland
- Mimics effects of TSH but not subject to normal control mechanisms
- Treatment
 - Antithyroid drugs, thyroidectomy, large doses of radioactive iodine

Toxic Goiter

Large nodular goiter
Hypothyroidism

- In adult
 - Myxedema
 - Causes metabolic slowing
 - Treatment: administration of thyroid hormone
- In an infant
 - Cretinism
 - Causes impaired growth and CNS development
 - Causes hypometabolism
 - Early diagnosis and treatment required for normal development

Chronic Thyroiditis or Hashimoto Thyroiditis

- Autoantibody destroys thyroid tissue
- Results in hypothyroidism
- An immunologic reaction, not from an infection
- Cellular infiltration from an immunologic reaction between antigen and antibody

Thyroid Tumors

- Benign adenoma
- Carcinoma
 - Well-differentiated follicular and papillary carcinoma
 - Good prognosis; treatment by surgical resection
 - Poorly-differentiated carcinoma
 - Poor prognosis; rapidly growing
 - Treatment: surgery, radiation, chemotherapy
 - Medullary carcinoma
 - Rare, secretes calcitonin
Parathyroid Glands
- Blood calcium level is in equilibrium with calcium in the bone.
- Actions: Calcium level: regulated by parathyroid glands
 - Low calcium in blood: causes tetany (increased neuromuscular excitability causing spasm of skeletal muscle)
 - High calcium in blood: causes lowered neuromuscular excitability

Hyperparathyroidism
- Usually from a hormone-secreting parathyroid adenoma
- Effects
 - Hypercalcemia: blood calcium rises
 - Renal calculi: from excessive calcium excreted in urine
 - Calcium deposition in tissues
 - Decalcification of bone: from excessive calcium withdrawn from bone
- Treatment: Removal of tumor

Hypoparathyroidism
- Usually from accidental removal of parathyroid glands during thyroid surgery
- Effects:
 - Hypocalcemia: blood calcium falls precipitously
 - Leads to neuromuscular excitability and tetany
- Treatment: raise calcium levels
 - High-calcium diet
 - Supplementary vitamin D

Adrenal Cortex (1 of 2)
- Adrenals: paired glands above kidneys
- Hormones secreted by adrenal cortex
 - Glucocorticoids
 - Mineralocorticoids
 - Aldosterone: major hormone
 - Renin-angiotensin system is main stimulus
 - Sex hormones
- Overproduction of aldosterone
 - From aldosterone-producing tumor of adrenal cortex
 - High sodium, blood volume, blood pressure
 - Low potassium level leading to neuromuscular manifestations

Adrenal Cortex (2 of 2)
- Overproduction of adrenal sex hormones
 - Congenital adrenal hyperplasia
 - Sex-hormone-producing tumors

Adrenal Medulla
- Produces catecholamines that stimulate the sympathetic nervous system
 - Norepinephrine (noradrenaline)
 - Epinephrine (adrenaline)
- Pheochromocytoma: increased secretion of catecholamines
 - Produces pronounced CV effects
 - May cause cerebral hemorrhage from hypertension
 - Any emotional stress causes release of hormones
- Treatment: tumor resection
Addison Disease
• An adrenal cortical hypofunction
• Deficiency of all steroid hormones
 – Glucocorticoid deficiency: hypoglycemia
 – Mineralocorticoid deficiency: low blood volume and low blood pressure
 – Hyperpigmentation: from increased ACTH due to loss of feedback inhibition
• Autoimmune disorder
 – Treatment: administration of corticosteroids

Cushing Disease
• Excessive production of adrenal corticosteroids
 – Glucocorticoid excess: disturbed carbohydrate, fat, and protein metabolism
 – Mineralocorticoid excess: high blood volume and high blood pressure
 – Treatment: tumor removal
• Causes
 – Hormone-producing pituitary microadenoma
 – Hormone-producing adrenal cortex adenoma
 – Hyperplastic adrenal glands
 – Administration of large amounts of corticosteroids
 – Other tumors

Cushing’s disease before treatment.

Pancreatic Islets
• Pancreatic tissue that functions as an endocrine gland
• Produce hormones
 – Beta cells: insulin production
 – Alpha cells: glucagon
 – Delta cells: somatostatin

Gonads
• Function
 – Production of germ cells
 – Production of sex hormones: controlled by gonadotropic hormones of pituitary gland FSH and LH
• Tumors may secrete hormones
• Treatment: surgical excision

Nonendocrine Tumors
• Ectopic hormones: hormones secreted by nonendocrine tumors that are identical with or mimic action of true hormones
• Usual origin: produced by malignant tumors
• Lung, pancreas, kidneys, connective tissue
Stress and Endocrine System

• Stress: any event that disturbs homeostasis
• Causes: injury, surgery, prolonged exposure to cold, vigorous exercise, pain, or strong emotional stimulus such as anxiety or fear
• Acute response to stress
 – Fear-fight-flight reaction
 – Mediated by sympathetic nervous system and adrenal medulla
• Chronic response to stress: alters metabolism, taxes CV system, impairs inflammatory and immune responses
 – Involves adrenal cortex; predisposes to illness

Obesity (1 of 2)

• Occurs when caloric intake exceeds requirements
• Usually NOT result of endocrine or metabolic disturbance
• Health consequences
 – Cardiovascular disease
 – Diabetes
 – Cancer
 – Musculoskeletal problems
 – Impaired pulmonary function

Obesity (2 of 2)

• Treatment
• Medical: diet
• Drugs: suppress appetite
 – Combination of fenfluramine and phentermine (fen-phen) causes heart valve damage
• Surgery
 – Ileal bypass: several complications, infrequently performed
 – Gastric bypass
 – Vertical-banded gastroplasty

Types of Bariatric Surgery

Discussion

• What are the major hormones produced by the pituitary gland?
• What are the major effects of abnormal output of thyroid hormone?
• What is the usual cause of obesity and its complications?