Learning Objectives

• Classify fats according to their chemical composition and distinguish between saturated and unsaturated, monounsaturated and polyunsaturated, cis and trans, and omega-3, -6, and -9 fatty acids
• Describe the digestion, absorption, transportation, and storage of fat
• Explain the metabolism of fat, including mobilization, transportation, uptake, activation, translocation, and oxidation as well as ketosis and the effect it may have on training

Learning Objectives

• Describe how the body uses fat to fuel exercise
• State fat recommendations for athletes and calculate the amount of fat needed daily
• Identify sources of dietary fat and assess an athlete’s dietary fat intake
• Evaluate dietary supplements related to fat metabolism

Introduction

• Fat
 – Dietary intake
 • There are health risks associated with too much and too little
 – Member of lipids class of compounds
 • Triglycerides (fats and oils)
 • Phospholipids
 • Sterols

Roles of Body Fat

• Lipids: provide energy
• Adipose tissue
 – Fat-storing cells; also secretes hormones
 – Fat stored in fat cells
 • Supplies 60 percent of the body’s ongoing energy needs during rest
 – Fat embedded in muscle
 • Along with glycogen, provides energy to muscle
The Chemist’s View of Lipids

- **Triglycerides**
 - Predominant form of lipids
 - Three fatty acids attached to a glycerol “backbone”
- **Fatty acids**
 - Differ in chain length and degree of saturation
 - What is the difference between a saturated fatty acid and an unsaturated fatty acid?

TABLE 4-2 The Lipid Family

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglycerides (fats and oils)</td>
<td>Glycerol (1 per triglyceride)</td>
</tr>
<tr>
<td>• Fatty acids (3 per triglyceride)</td>
<td>Saturated</td>
</tr>
<tr>
<td></td>
<td>Monounsaturated</td>
</tr>
<tr>
<td></td>
<td>Polyunsaturated</td>
</tr>
<tr>
<td></td>
<td>Omega-6</td>
</tr>
<tr>
<td></td>
<td>Omega-3</td>
</tr>
<tr>
<td>Phospholipids (such as lecithins)</td>
<td>Sterols (such as cholesterol)</td>
</tr>
</tbody>
</table>

Diagram:

- Illustration of saturated, monounsaturated, and polyunsaturated fatty acids.

Omega-3 is a type of polyunsaturated fatty acid. DHEA is dehydroepiandrosterone.
The Chemist's View of Lipids

CAN YOU TELL BY LOOKING?

• Comparison of three fats
 – Lard (from pork): most saturated • hardest
 – Chicken fat: less saturated • somewhat soft
 – Safflower oil: most unsaturated • liquid

• Stability
 – Why are polyunsaturated fatty acids most susceptible to becoming rancid?

The Chemist's View of Lipids (cont’d.)

• Stability
 – Methods manufacturers protect fat-containing products from rancidity
 1. Seal products airtight and refrigerate
 2. Add antioxidants, e.g., BHA and BHT
 3. Hydrogenate products

The Chemist's View of Lipids (cont’d.)

• Hydrogenation
 – Advantages: protects against oxidation and alters texture
 – What are the disadvantages?

• Essential fatty acids
 – Linoleic acid: omega-6 fatty acid
 – Linolenic acid: omega-3 fatty acid

The Chemist's View of Lipids (cont’d.)

• Phospholipids: class of lipids
 – Food sources: eggs, soybeans, peanuts, etc.
 – Lecithin and other phospholipids
 • Constituents of cell membranes
 • Emulsifiers in the body
 • Some generate signals in cells

The Chemist's View of Lipids (cont’d.)

• Sterols
 – Large, complex molecules
 • Interconnected rings of carbon
 • Cholesterol, vitamin D, and sex hormones
 – Cholesterol
 • Obtained in foods as well as made by the liver

Digestion of Lipids

Dietary Lipid
95% Triglyceride

Mouth
- None

Stomach
- Gastric Lipase

Small Intestine
- Bile Saliva
 Pancreatic Lipase
 Cholesterol Esterase (Ble)

Bile Salts
Pancreatic Lipase
Cholesterol

Chylomicrons
Liver

Lipoproteins
VLDL

Portal Vein
Dietary Cholesterol
FA 4
The Chemist’s View of Lipids (cont’d.)
• Cholesterol
 – Leaves liver by two routes:
 1. Incorporated into bile, stored in the gallbladder, and delivered to the intestine
 2. Via the bloodstream to all the body’s cells

Health Effects and Recommended Intakes of Fats
• Diet high in saturated fats or trans fats
 – Increased risk of cardiovascular disease
 – Greater-than-average chances of some cancers
 – An increasing waistline often increases blood triglycerides

Health Effects and Recommended Intakes of Fats (cont’d.)
• Fats and heart health
 – High LDL: increased likelihood of fatal heart attack or stroke
 • Promotes cholesterol uptake in the blood vessel walls
 – High HDL: lower disease risk
 – Trans fats: raise LDL and lower HDL

Health Effects and Recommended Intakes of Fats (cont’d.)
• Dietary Guidelines for dietary cholesterol
 – Healthy people: less than 300/day
 – People with or at high risk of heart disease: less than 200 mg/day
• Monosaturated fat (olive oil)
 – May prevent heart disease
• Omega-6 and omega-3 fats
 – Lower total cholesterol and LDL

Fat Oxidation During Exercise
• Total energy (kcal) need
 – Macronutrient balance
 • Higher CHO/protein intake typically means lower fat intake
 • Severe restriction of fat intake not recommended
 – Often expressed as a % of total energy intake
 • 20 to 35% total caloric intake
 – May be expressed on g/kg body weight basis
 • ~1.0 g/kg daily
 • May need to be as high as 3.0 g/kg (ultra-endurance athletes)
Fat Recommendations for Athletes

- Adjusting fat intake to achieve energy deficits
 - Reducing body fat may result in improved performance
 - Fat intake is typically reduced since reductions to CHO or protein intakes may be detrimental to performance
 - Athletes may consume a short-term, low fat diet to achieve body composition goals
 - The fat intake of a bodybuilder will vary depending on the training cycle

Inadequate Fat Intake Can Negatively Affect Training, Performance, and Health

- Effects of an inadequate fat intake on training, performance, and health
 - Inadequate replenishment of intramuscular fat stores
 - Inability to manufacture sex-related hormones
 - Decline in high-density lipoprotein cholesterol (HDL-C)
 - Inadequate fat-soluble vitamin intakes

Translating Fat Recommendations to Food Choices

- Many athletes fail to consume an appropriate amount of fat
- Certain unsaturated fatty acids may help to reduce heart disease risk
- Excess saturated fat intake should be avoided

Summary

- Fat is the most energy-dense nutrient found in food
- The predominant fat in food and in the body is the triglyceride
- Fat absorption, digestion, transportation, and metabolism are slow and complicated
- The main sites of fat storage are adipocytes, liver, and muscle cells
- Fat is the primary energy source at rest and during low-intensity activity

Summary

- Athletes find that their diets tend to be relatively lower in fat than the typical American diet
- Caution should be used when restricting fat because athletes can reduce the fat in their diets too much