One Way ANOVA

Presented by:
James Mortimer PhD

Introduction

One-way ANOVA.

One-way **AN**alysis Of **VA**-iance

- Extension of independent samples t-test to 3 or more samples.
- Hypothesis testing only – Confidence intervals are not provided with this method.

Example

Compare efficacy of treating people with high cholesterol with 20 mg. vs. 40 mg. of Lipitor on reduction of cholesterol.
Conditions to Reject Null

1. μ_1 and μ_2 are equal, but μ_i is different from both of them.
2. μ_1 and μ_2 are equal, but μ_i is different from both of them.
3. μ_1 and μ_2 are equal, but μ_i is different from both of them.
4. μ_1, μ_2, and μ_i are all different from each other.

F Statistic

Nomenclature:
- MS_b: Mean Sum of Squares between
 - Sometimes called MS_e
- MS_w: Mean Sum of Squares within
 - Sometimes called MS_e

Obtained $F = \frac{MS_b}{MS_w}$

Mean sum of squares within:

F Table in Appendix C of Textbook

Mean Sum of Squares Between

F-statistic, because it is a ratio, has not one, but two degrees of freedom.

$$MS_b = \frac{SS_b}{k-1}$$

$SS_b = \sum (\text{Sum of Squares between})$

k = Number of Groups being compared
Mean Sum of Squares Within

\[MS_w = \frac{\left(\sum x_i^2 - \left(\frac{\sum x_i}{n} \right)^2 \right)}{n_k} \]

\[\left(\sum x_i^2 - \left(\frac{\sum x_i}{n} \right)^2 \right) \]

\[\left(\sum x_i - \left(\frac{\sum x_i}{n} \right) \right) \]

\[(N-k) \]

Note: \(N = n_1 + n_2 + n_3 \)

What MSw Represents

- The variance of a group of observations does not change when the same constant is added to every observed value.
- \(MS_w \) is an estimate of the variance of the population from which the samples are drawn.
- Whether the null hypothesis is true or false has no effect on \(MS_w \).
What MSb Represents

- MSb is a measure of variability of the means of the groups.
- The equation for the Mean Sum of Squares between: \(MS_b = SS_b / k - 1 \)

Adding a Constant

If we add 10 to all observations in one group, but not another, as we did in the preceding Self-Assessment exercise, what effect would this have on MSb?

MSb would increase AND F > 1

Critical F and F-test

- \(k = 3 \), \(N = 3 \times 4 = 12 \)
- Numerator \(df = k - 1 = 2 \)
- Denominator \(df = N - k = 12 - 3 = 9 \)
- \(\alpha = .05 \)
Example One Way ANOVA

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

One Way ANOVA

Example (cont)

\[MS_E = \frac{\sum (X^2)}{k} \]

\[MS_E = 13.25 \]

One Way ANOVA

Example (cont)

\[MS_E = \frac{\sum (X^2) - \frac{1}{k} (\sum X)^2}{k(k-1)} \]

\[MS_E = 16.1833 \]

Example (cont)

Obtained \(F = \frac{16.1833}{13.25} = 1.221 \)

Numerator df=k-1=4-1=3

Denominator df=N-k=20-4=16

Critical \(F = 3.24 \)

One Way ANOVA
Unequal Sample Sizes

\[SS_b = \left(\frac{\sum X_1}{n_1} \right)^2 - \left(\frac{\sum X_2}{n_2} \right)^2 - \ldots - \left(\frac{\sum X_k}{n_k} \right)^2 - \frac{\sum X_1}{N} \]

Two-Way ANOVAS

- Two-way ANOVA – Adds another dimension to categorization of groups.

<table>
<thead>
<tr>
<th>Tall women</th>
<th>Med women</th>
<th>Short women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tall men</td>
<td>Med men</td>
<td>Short men</td>
</tr>
</tbody>
</table>

Example: gender and height

Computing Two, Three and Factorial ANOVAS

- Compare the variance between groups and within groups.
- For each factor, calculate similar to one-way ANOVA
- For the interaction effects, the df interaction = df factor ‘a’ x df factor ‘b’

\[df_a \times df_b \]
Review

- Hypothesis testing compares
 Observed and Critical F's.