Learning Objectives

• Use the standard normal distribution table (Table 1 in the Appendix) to calculate the probability that an individual will have a value of a normally-distributed variable above or below any value or between two values.
• Compute any percentile in the normal distribution.

Distribution of IQ in the US Population
Computing areas under a normal curve

You Try It!
What is the probability that someone in the US population has an IQ between 96 and 115?

The Answer

You Try It!
What is the probability that someone in the US population has an IQ between 96 and 115?

The Answer

\[Z_{96} = (96-100)/16 = -0.25 \quad \text{Probability } Z < -0.25 = 0.4013 \quad \text{[Prob IQ < 96]} \]
\[Z_{115} = (115-100)/16 = 0.3125 \quad \text{Probability } Z < 0.3125 = 0.6217 \quad \text{[Prob IQ < 115]} \]

Therefore, the probability that the IQ of any individual in the US is between 96 and 115 is 0.6217 - 0.4013 = 0.2204 or about 22%.
Computing Percentiles in the Normal Distribution

What is the 85 percentile of IQ in the United States?
[same as asking what IQ score do 85% of the individuals in the United States score less than]

1. To answer this question, we first look up the Z-score corresponding to an area of .8500. This is closest to 1.04 in Table 1 of the Appendix.

2. We then calculate x, knowing Z, \(\mu \) and \(\sigma \). Formula: \(Z = \frac{x - \mu}{\sigma} \)

3. Rearranging this formula, we get \(x = Z \sigma + \mu = (1.04)(16) + 100 = 116.64 \) or 117. Therefore, 85% of US citizens have an IQ less than 117.

You Try It!

What is the 73rd percentile of IQ in the United States?
The Answer

What is the Z-score corresponding to an area of .73? The closest Z-score corresponding to this area is 0.61.

Transform z back into x:

\[X = Z \sigma + \mu = (.61)(16) + 100 = 109.76 \text{ or } 110 \]

So the 73rd percentile is approximately 110.